Question Paper Code : X 60773

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020 Fourth Semester Mechanical Engineering MA 2266/MA 1254/10177 SN 401/080120014/MA 42 – STATISTICS AND NUMERICAL METHODS (Common to Automobile Engineering and Production Engineering) (Regulations 2008/2010)

Time : Three Hours

Maximum: 100 Marks

Statistical tables may be permitted. Answer ALL questions.

PART – A

(10×2=20 Marks)

- 1. Write any two applications of χ^2 -test.
- 2. What are Type I and Type II errors?
- 3. What do you understand by "Design of an experiment" ?

Reg. No. :

- 4. Write down the ANOVA table for one^{x^2} way classification.</sup>
- 5. Mention the order and condition for the convergence of Newton-Raphson method.
- 6. Compare Gauss elimination and Gauss-Jordan methods.
- 7. State the use of Lagrange's interpolation form.
- 8. Evaluate $\int_{1}^{2} \frac{dx}{1+x^2}$, using trapezoidal rule, taking h = 0.5.
- 9. Using Euler's method, find y (0.2) if y' = x + y, y (0) = 1.
- 10. Distinguish between Runge-Kutta method and Predictor-Corrector method.

(5×16=80 Marks)

PART – B

- 11. a) i) A machine puts out 16 imperfect articles in a sample of 500. After it was overhauled, it puts out 3 imperfect articles in a sample of 100. Has the machine improved in its performance ? (,)
 - ii) Test whether there is any significant difference between the variances of the populations from which the following samples are taken :

Sample I :	20	16	26	27	23	22		
Sample II :	27	33	42	35	32	34	38	(,)
	(OR)							

- b) i) A mathematics test was given to 50 girls and 75 boys. The girls made an average grade of 76 with a SD of 6, while boys made an average grade of 82 with a SD of 2. Test whether there is any significant difference between the performance of boys and girls.
 (,)
 - ii) A sample of 10 boys had the I.Q's : 70, 120, 110, 101, 88, 83, 95, 98, 100 and 107. Test whether the population mean I.Q. may be 100. (,)
- 12. a) A completely randomized design experiment with 10 plots and 3 treatments gave the following results.

Treatment	Yield		
А	$5\ 7\ 3\ 1$		
В	$4\ 4\ 7$		
C	351		

Analyse the results for treatment effects.

(OR)

b) The following data resulted from an experiment to compare three burners A, B, C. A Latin square design was used as the tests were made on 3 engines and were spread over 3 days.

A16	B17	C20		
B16	C21	A15		
C15	A12	B13		
$T_{-} + + + + + + + + + + + + + + + + + + +$				

Test the hypothesis that there is no difference between the burners. (16)

13. a) i) Solve the system of equations by Gauss – Jordan method.

$$x + y + z + w = 1; 2x - y + 2z - w = -5; 3x + 2y + 3z + 4w = 7;$$

x - 2y - 3z + 2w = 5. (8)

ii) Solve by Gauss – Seidel method the following system. 28x + 4y - z = 32; x + 3y + 10z = 24; 2x + 17y + 4z = 35. (8)

X 60773

(16)

- -3-
- b) i) Solve by Gauss Elimination method 3x + 4y + 5z = 18; 2x - y + 8z = 13; 5x - 2y + 7z = 20. (8)
 - ii) Using power method, find the largest eigenvalue and its corresponding

eigen vector of
$$A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$$
 (8)

14. a) i) Using Newton's divided difference formula find the value of f (8) for the following :

ii) Evaluate $\int_{0}^{1} e^{x} dx$ using Simpson's $\frac{1}{3}$ rule correct to five decimal places, taking h = .1. Verify your answer. (8)

b) i) Find
$$\left(\frac{dy}{dx}\right)_{1.1}$$
 and $\left(\frac{d^2y}{dx^2}\right)$ for the following :
x : 1.0 1.1 1.2 1.3 1.4 1.5 1.6 (8)

y : 7.989 8.403 8.781 9.129 9.451 9.750 10.031

ii) Using Lagrange's method find y (10) from the following : (8)
x : 5 6 9 11

15. a) i) Using Milne's predictor-corrector method, find y (0.4), given that $y' = (1 + x^2)y^2$, y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21. (8)

ii) Solve by Euler's method, the equation $\frac{dy}{dx} = x + y$, y(0) = 0, choose h = 0.2 and compute y(0.4) and y(0.6). (8) (OR) 2

b) i) Given
$$y' = x^2 - y$$
, $y(0) = 1$, $y(0.1) = 0.9052$, $y(0.2) = 0.8213$, find $y(0.3)$ using Taylor's series method. (6)

ii) Using Runge-Kutta method of fourth order, given y''+xy'+y=0, y(0) = 1, y'(0) = 0, find the value of y at x = 0.1. (10)