\square

Question Paper Code : X 60773

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020
Fourth Semester
Mechanical Engineering
MA 2266/MA 1254/10177 SN 401/080120014/MA 42 - STATISTICS AND NUMERICAL METHODS
(Common to Automobile Engineering and Production Engineering)
(Regulations 2008/2010)
Time : Three Hours
Maximum : 100 Marks

Statistical tables may be permitted.
Answer ALL questions.
PART - A
(10×2=20 Marks)

1. Write any two applications of χ^{2}-test.
2. What are Type - I and Type - II errors ?
3. What do you understand by "Design of an experiment" ?
4. Write down the ANOVA table for one ${ }^{x^{2}}$ way classification.
5. Mention the order and condition for the convergence of Newton-Raphson method.
6. Compare Gauss elimination and Gauss-Jordan methods.
7. State the use of Lagrange's interpolation form.
8. Evaluate $\int_{1}^{2} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$, using trapezoidal rule, taking $\mathrm{h}=0.5$.
9. Using Euler's method, find $\mathrm{y}(0.2)$ if $\mathrm{y}^{\prime}=\mathrm{x}+\mathrm{y}, \mathrm{y}(0)=1$.
10. Distinguish between Runge-Kutta method and Predictor-Corrector method.
11. a) i) A machine puts out 16 imperfect articles in a sample of 500 . After it was overhauled, it puts out 3 imperfect articles in a sample of 100 . Has the machine improved in its performance?
ii) Test whether there is any significant difference between the variances of the populations from which the following samples are taken :

Sample I :	20	16	26	27	23	22		
Sample II :	27	33	42	35	32	34	38	
	(OR)							

b) i) A mathematics test was given to 50 girls and 75 boys. The girls made an average grade of 76 with a SD of 6 , while boys made an average grade of 82 with a SD of 2 . Test whether there is any significant difference between the performance of boys and girls.
ii) A sample of 10 boys had the I.Q's : 70, 120, 110, 101, 88, 83, 95, 98, 100 and 107. Test whether the population mean I.Q. may be 100 .
12. a) A completely randomized design experiment with 10 plots and 3 treatments gave the following results.

Treatment	Yield
A	57731
B	4447
C	3.51

Analyse the results for treatment effects.
(OR)
b) The following data resulted from an experiment to compare three burners A, B, C. A Latin square design was used as the tests were made on 3 engines and were spread over 3 days.

A16	B17	C20
B16	C21	A15
C15	A12	B13

Test the hypothesis that there is no difference between the burners.
13. a) i) Solve the system of equations by Gauss - Jordan method.

$$
\begin{align*}
& x+y+z+w=1 ; 2 x-y+2 z-w=-5 ; 3 x+2 y+3 z+4 w=7 ; \\
& x-2 y-3 z+2 w=5 . \tag{8}
\end{align*}
$$

ii) Solve by Gauss - Seidel method the following system.

$$
\begin{equation*}
28 x+4 y-z=32 ; \quad x+3 y+10 z=24 ; \quad 2 x+17 y+4 z=35 . \tag{8}
\end{equation*}
$$

b) i) Solve by Gauss - Elimination method
$3 \mathrm{x}+4 \mathrm{y}+5 \mathrm{z}=18 ; 2 \mathrm{x}-\mathrm{y}+8 \mathrm{z}=13 ; 5 \mathrm{x}-2 \mathrm{y}+7 \mathrm{z}=20$.
ii) Using power method, find the largest eigenvalue and its corresponding eigen vector of $A=\left[\begin{array}{ccc}5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5\end{array}\right]$
14. a) i) Using Newton's divided difference formula find the value of f (8) for the following :

x	$:$	4	5	7	10	11	13
$\mathrm{f}(\mathrm{x})$	$:$	48	100	294	900	1210	2028.

ii) Evaluate $\int_{0}^{1} \mathrm{e}^{\mathrm{x}} \mathrm{dx}$ using Simpson's $1 / 3$ rule correct to five decimal places, taking $h=.1$. Verify your answer.
(OR)
b) i) Find $\left(\frac{d y}{d x}\right)_{1.1}$ and $\left(\frac{d^{2} y}{d x^{2}}\right)$ for the following:

x	$:$	1.0	1.1	1.2	1.3	1.4	1.5

$\begin{array}{llllllll}\text { y : } & 7.989 & 8.403 & 8.781 & 9.129 & 9.451 & 9.750 & 10.031\end{array}$

$\mathrm{x}:$	5	6	9	11

$\begin{array}{lllll}y & : & 12 & 13 & 14\end{array}$
15. a) i) Using Milne's predictor-corrector method, find y (0.4), given that $y^{\prime}=\frac{\left(1+x^{2}\right) y^{2}}{2}, y(0)=1, y(0.1)=1.06, y(0.2)=1.12, y(0.3)=1.21$.
ii) Solve by Euler's method, the equation $\frac{d y}{d x}=x+y, y(0)=0$, choose $h=0.2$ and compute $y(0.4)$ and $y(0.6)$.
(OR)
b) i) Given $y^{\prime}=x^{2}-y, y(0)=1, y(0.1)=0.9052$, $y(0.2)=0.8213$, find $y(0.3)$ using Taylor's series method.
ii) Using Runge-Kutta method of fourth order, given $y^{\prime \prime}+x y^{\prime}+y=0$, $y(0)=1, y^{\prime}(0)=0$, find the value of y at $x=0.1$.

